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LOGIC, ALGEBRA, RELATIVITY - 2002
CONFERENCE DEDICATED TO THE WORK OF ISTVAN NEMETI

November 4 - 8, 2002
Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Programme

The 14:00-15:45 talks on Thursday, November 7 are in the room ‘Kutyas’.
All other talks are in the Main Lecture Hall of the Institute.
MONDAY, November 4
13:00-13:40 REGISTRATION
13:45 Opening
Istvan Juhasz
14:00-15:00 A new concept of computability
Matk Hogarth
COFFEE BREAK
15:30-16:15 Reformulation of the strong cosmic censor conjecture based on
computability
Gabor Etesi
16:15-16:50 Operator algebras and quantum logic
Miklés Rédei
16:50-17:25 Ontology of logic
Laszl6 E. Szabo

TUESDAY, November 5
13:00-14:00 REGISTRATION
14:00-14:35 A roadmap of Istvin Németi's joutney from a design of power stations to
the theory of cylindric algebras (and beyond)
Balint Domolki
14:35-15:20 Many-dimensional modal logics
Agi Kurucz
COFFEE BREAK
15:35-16:10 Subdirect irreducibility (a frame perspective)
Yde Venema
16:10-16:55 Strongly representable atom structutes
Robin Hirsch
16:55-17:40 Aspects of the finite base/model property
Ian Hodkinson



WEDNESDAY, November 6
14:00-15:00 Quasivarieties of heterogeneous partial algebras
Peter Burmeister
15:00-15:45 Some results of Novi Sad school inspired by Andréka and Németi
Sinisa Ctvenkovic, Rozalia Madarisz
COFFEE BREAK
16:00-16:35 On neat embeddability of cylindric algebras
Miklé6s Ferenczi
16:35-17:10 Neat reducts, interpolation and omitting types
Tarek Sayed Ahmed
17:10-17:55 Axiomatizability of reducts of RRA
Szabolcs Mikulas
BREAK
18:15-20:00 BIRTHDAY PARTY

THURSDAY, November 7

14:00-14:35 Understanding relativity theory through logic
Jesse Alama

14:35-15:10 Twin paradox in model theoretic terms
Gergely Székely

15:10-15:45 Undecidability of telativity theories
Sandor Valyi

COFFEE BREAK

16:00-16:45 Algebraic and topological methods in Lambda Calculus
Antonino Salibra

16:45-17:30 The finiteness principle of database theory
Csaba Henk

FRIDAY, November 8
14:00-14:35 Pictures, analogies, dualities
Gabor Sagi
14:35-15:10 Relativity and quantum black holes
Amr Sayed Ahmed
COFFEE BREAK
15:25-16:25 Relativity and algebraic logic
Hajnal Andréka, Judit Madarisz
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S.Crvenkovic, I.Dolinka, R.Madarasz:

Some results of Novi Sad school
inspired by Andreka and Nemeti

Some of the recent results of Novi Sad algebraic school, which are
directly connected to the mathematics we have learned from Andreka
and Nemeti, will be presented. This includes results on Relation
Algebras, Algebras of Complexes, Kleene Algebras, Dynamic Algebras,
Decidability, Formal Languages.

Gabor Etesi:

Reformulation of the strong cosmic censor conjecture
based on computability

In this lecture we provide a refomulation of the strong cosmic censor
conjecture taking into account recent results on Malament--Hogarth
space-times.

We claim that the strong version of the cosmic censor conjecture can be
reformulated by postulating that a physically relevant space-time is
either globally hyperbolic or possesses the Malament--Hogarth property.
But it is known that a Malament--Hogarth space-time in principle is
capable for performing non-Turing computations such as checking the
consistency of ZFC set theory.

In this way we get an intimate conjectured link between the cosmic
censorship scenario and computability theory.

Csaba Henk:
The finiteness principle of database theory

A paradigm of computer science that data must be stored by finite
means. There are many such data storing schemes. However, database
theory uses the simplest kind of data structrure: it is a paradigm
(of database theory) that data are stored in tables. This paradigm
has a deep impact on the range of the possible queries: only those
queries are admissible which preserve finiteness, since a relation
can be stored in a finite table iff it is finite. Hence I call this
paradigm "the finiteness principle of database theory". But not only
finite relations can be stored by finite means: e.g., the graph of

a polynomial can be stored by the polyomial itself.

The talk aims two questions:
* Which sub-languages of the first order language do preserve
finiteness?
* How could we relax the finiteness princile?

Ian Hodkinson:
Aspects of the finite base/model property

Since Nemeti proved in 1987 that WA has the finite algebra property,
several more results for related classes of algebras and fragments of
first-order logic have been proved, including by Andreka and Nemeti.
A combinatorial theorem of Herwig has been central to recent
progress, and recently this theorem has been strengthened. I will
describe some of the ideas and history of this area of research.

Szabolcs Mikulas:
Axiomatizability of reducts of RRA

The aim of this talk is to give an overview of the axiomatizability
problem of algebras of binary relations. We will focus on the finite
axiomatizability of several fragments of Tarski’s class of
representable relation algebras. Finite axiomatizability results can
be established by using the step-by-step method, while ultraproduct
constructions yield non-finite axiomatizability. We will conclude
with some open problems that could be tackled using either of the
above methods.

Yde Venema:
Subdirect irreducibility (a frame perspective)

We give a characterization of the simple, and of the subdirectly
irreducible boolean algebras with operators (including modal algebras),
in terms of the dual descriptive general frame.

These characterizations involve a special binary *quasi-reachability*
relation on the dual structure; we call a point a quasi-root of the
dual structure if every ultrafilter is quasi-reachable from it.



We prove that a boolean algebra with operators is simple iff every point
in the dual structure is a quasi-root; and that it is subdirectly
irreducible iff the collection of quasi-roots has measure nonzero in the
Stone topology on the dual structure.
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On neat embeddability of cylindric algebras

Miklos Ferenczi

I would like to say thanks for Istvan Nemeti for calling my attention
to the class relativized cylindric set algebras (Crsy’s) and to many other
interesting areas of algebraic logic. He helped me much to prepare my first
paper on Crs algebras. The result below is a part of my actwity on this area.

As is well-known, the classical representation theorem of the theory of
cylindric algebras is: A dGws, if and only if A €SNr,CA,+e, where € > w,
¢ is a fixed ordinal, Gws,, is the class of generalized cylindric set algebras
of dimension a, CA, is the class of cylindric algebras of dimension o and
SNrqCAqqe is the class of CA,’s that have the neat embedding property.

The following questions arise:

Is it possible to enlarge the class CA in SNroCAq4e so that the theorem
still be true?

Is it possible to generalize the theorem from the class Gws, to the class
Dq e.g.(Dg, is a subclass of Crsq for which C;D;; = V where V is the unit
of the algebra), and is it possible to replace the class CA in the hypothesis
“A €SNr,CAqie” by a suitable class for this case?

We define a class Mg desired (o < B) : M3 is the class for which
% k= {Co, C1, Cz, C3, Cs5, C7,— C4,- Ce}

where Cg denotes the conjuction of the usual Boolean axioms, C1,C2,C3,Cs
and C7 are the usual cylindric axioms, —C4 and _Cg are definite weakenings
of the usual cylindric axioms C4 and Cg. The following theorem is true:

Theorem A €ID, if and only if A €SNroMg,,.

_ Here we need the class F, where Fa k= {Cy,C1,C2,C3,C4,C5,C6,Cr} and
C, is the property c;dincjdjmz = cjdjimcidinT.

e-mail: ferenczi@math.bme.hu
Techn. University of Budapest,
Department of Algebra




(Quasivarieties of Heterogeneous‘ Partial
Algebras

Peter Burmeister
Department of Mathematics
Darmstadt University of Technology
e-mail: burmeister@mathematik.tu-darmstadt.de

Abstract: The work of Istvdn Németi together with his collaborators
Hajnal Andréka and Ildiké Sain has had a great influence on my work in
particular in the late seventies and the early eighties of the 20th century.
Mainly their results in [AN83], of which a preprint had already appeared in
1977, and in particular the papers [AN82] and [NSa82] formed a basis for
the central part of my book [B86], in which I could show that their “Meta
Birkhoff Theorem” leads to a wealth of different closure operators for the
description of quasivarieties definable by special kinds of quasi-identities.
It contains explicitly about 30 “simple” closure operators and in addition at
least 18 usually infinite families of such operators (special forms of the “Meta
Birkhoff Theorem” for homogeneous partial algebras have also been discussed
in the survey articles [B92] and [B93]). Besides a review of these results
and on some new results on special quasivarieties, the relative behaviour of
existence varieties, primitive classes and independence classes in the case of
heterogenous partial algebras (cf. [B02]) will be discussed.
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Strongly representable atom structures

Robin Hirsch and Ian Hodkinson

Abstract. A relation algebra atom structure « is said to be strongly representable if all
relation algebras with that atom structure are representable. This is equivalent to saying
that the complex algebra C'm « is a representable relation algebra. We show that the class
of all strongly representable relation algebra atoms structures is not closed under ultra-
products and is therefore not elementary. Our proof uses graphs T',, discovered by Erdés,
that cannot be coloured with any finite number of colours but where all of their ‘small’
induced subgraphs can be coloured with just two colours. From these graphs we build
‘rainbow atom structures’ a(I';). The fact that I', cannot be coloured finitely is enough to
prove that o(T';) is strongly representable and the fact that ‘small induced subgraphs’ of
each I'; can be two-coloured is enough to prove that a non-principal ultraproduct IIp T,
can be two-coloured and this suffices to show that IIp «(T,) is not strongly representable.
Thus the class of strongly representable atom structures is not closed under ultraproducts.
This article appears in Proc. AMS, vol. 130, pp. 1819-1831.
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Pictures, Analogies, Dualities

Gabor Sagi
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, H-1053, Redltanoda u. 13-15.
e-mail: sagi@renyi.hu

Abstract. We will present some recently obtained connections between topological
and model theoretical properties of ultraproducts. Applications to finite model
theory will also be discussed. Our approach will be illustrated by pictures intended
to help to visualise the notions involved. Starting points of a duality theory between
topology and model theory will also be illustrated by these pictures.



Relativity and Quantum Black Holes

Amr Sayed Ahmed
Department of Mathematics, Faculty of Science,
Cairo University, Giza, Egypt.

Abstract .

Black holes take the hitherto established laws of physics (governing both rela-
tivity and quantum mechanics) to the limit in many different respects of which we
select two, the first due to Godel and the second due to Hawking. In the context
of classical general relativity, Godel found an exotic space-time goemetry consistent
with Einstein’s relativity equations. In this model of Einstein’s general relativity,
the universe rotates so that spacetime can curve in ways that permits short cuts
in spacetime allowing you to beat a light beam and journey back into the past. In
Godel’s (hypothetical) universe, rotation - unlike the (real) expanding universe -
seems to allow time travel. Also the rotation phenemona takes place on a smaller
scale in black holes. In the process of unification theories, Hawking imposes the
uncertainty principle on the laws of general relativity. From this he concludes that
black holes radiate light so that they are not too black after all. The above two
examples, among many others not addressed herein, suggest that black holes should
play a crucial role as far as unification theories are concerned. In our talk we discuss
further the above ideas and other related concepts. Also we pose some questions.
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Neat reducts, interpolation and omitting types

Tarek Sayed Ahmed
Department of Mathematics, Faculty of Science,
Cairo University, Giza, Egypt.

Abstract . Neat reducts is an old venerable notion in algebraic logic. But it often
happens that unexpected viewpoints give new insights. Indeed the repercussions of
the (apparently) very innocent looking fact that the class of neat reducts is not
closed under forming subalgebras turns out to be enormous. In this talk we discuss
some of these repercussions in connection to definability, interpolation and omitting
types for variants of first order logics.




Ontology of Logic

Laszlo E. Szabo

Theoretical Physics Research Group of the Hungarian Academy of Sciences

Department of History and Philosophy of Science
Eétvés University, Budapest
E-mail: leszabo@hps.elte.hu

Abstract

According to the formalist doctrine mathematical objects have no
meanings; we have symbols and rules governing how these symbols can
be combined. That’s all.

This paper goes further by formulating a more radical thesis: The
signs of a formal system of mathematics should be considered as physical
objects, and the formal operations as physical processes. The rules of the
formal operations are (or can be, in principle) expressed in terms of the
laws of physics, governing these processes. In accordance with the physi-
calist understanding of mind, this is true even if the operations in question
are executed in head. A truth obtained through (mathematical) reason-
ing is, therefore, an observed outcome of a neuro-physiological (or other
physical) experiment. Consequently, deduction is nothing but a particular
case of induction; the certainty available in inductive generalization is the
best of all possible certainties.
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Undecidability of relativity theories

Sandor Vilyi

Department of Computer Science
University of Debrecen, Hungary
valyis @math.klte.hu

In the last years, Andréka, Madarisz and Németi developed a first-order model
theory for the special relativity theory. Their theories formalise the basic principles
of the common approach to the relativistic kinematics.

In this talk we demonstrate that most of the resulting theories are undecidable - even
the coordinatizing field has a decidable first-order theory. This fact shows that the
mentioned theories capture more from the relativity theory than the first-order theory
of Minkowskian geometry which is shown to be decidable e.g. by Rob Goldblatt.
The main reason for the undecidability is that these theories allow to exist objects
living on a space-time trajectory no coinciding with any geodetics of the
Minkowskian geometry (e.g. periodically moving bodies). Utilizing such an object
we can execute a Godel-like reasoning to find a sentence speaking about its own
truth - and it gives hereditaly undecidability of these theories.

On the other hand, if we restrict the expressive power of the possible models by
cutting out such objects (+ adding some natural symmetry axioms and requiring that
the coordinatizing field is real-closed) then we can create a decidable extension
which has enough expressive power to deal with the common classroom treatise of

the special relativity.
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VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

T

October 18, 2002

Dear Istvan,

Happy 60th Birthday !

I congratulate you on achieving this large cardinal of years. May you have uncountably
many more.

I am sorry that I am not able to attend the celebrations and talk with you about the many
pleasurable interactions I have had over the years with yourself, Hajnal and Ildiko.

I recall particularly my visits to Hungary in 1992 (the conference at Vesprem), and in 1995.
On the second occasion I had a most interesting time staying in an apartment in the hills of
Budapest, traveling round the city in a world in which my linguistic intersection with the
local population was a set of measure zero.

I especially enjoyed the stimulating discussions about BAO’s we held, resulting in our joint
paper in the Journal of Symbolic Logic.

The Algebraic Logic Department in Budapest has made a magnificent contribution to the
development of the subject, one of which you can be justly proud. Long may it continue.

With very best wishes,

Rob Goldblatt

Centre for Logic, Language and Computation
http://www.cllc.vuw.ac.nz

SCHOOL OF MATHEMATICAL AND COMPUTING SCIENCES
P.O. Box 600, Wellington, New Zealand, Telephone +64 4 463 5341, Facsimile +64 4 463 5045
office@mcs.vuw.ac.nz



’

My contacts with Istvan Nemeti began roughly in 1978. About then I began to write a
lengthy article on cylindric set algebras, based on earlier work of mine and of Leon Henkin
(a joint article of Henkin and Monk appeared in 1974). Soon it was clear that Andreka
and Nemeti had obtained so many results relevant to that article that something should
be done about it. The solution was a joint monograph in the Springer Lecture Notes in
Mathematics series, with our article (Henkin, Monk, Tarski), followed by a parallel article
by Andreka and Nemeti, in which they developed our ideas further and solved many of the
problems which had arisen. This period of time, up to the publication of the monograph in
1981, was the time when my contacts with Istvan and friends was closest. A little bit later
we again had some correspondence back and forth as the volume II of the cylindric algebra
monographs of Henkin, Monk, Tarski was being prepared; this monograph appeared in
1985. Since that time, despite the efforts of Istvan and his associates, I have worked
mainly on Boolean algebras, with just a little activity concerning cylindric algebras; when
that little activity took place, it was associated with the Andreka, Nemeti group. So, I

have enjoyed several visits to Budapest, and regret that I am unable to attend Istvan’s
birthday celebration.

Don Monk
Boulder, September 2002
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My collaboration with Istvdin Németi and his collaborators Hajnal Andréka and
Tldiké Sain started somewhat after 1977. As far as I remember, we first met on
conferences at Szeged, at least in 1975. But not before his student from that time,
Ana Pé4sztor, came to me to Darmstadt and showed me a preprint of [AN83] - this had
appeared already in 1977 — I got acquainted with the work of this group and realized
how it extended my ideas from [B70] and [B71]. Mainly their results in [AN82] and
[NSa82], of which already preprints were around at that time, too, formed a basis for
our joint paper [ABN81] and also for the central part of my book [B86], in which I
could provide a lot of examples for their “Meta Birkhoff Theorem”. In particular,
I could show there that it leads to a wealth of different closure operators for the
description of quasivarieties definable by special kinds of quasi-identities. The book
contains explicitly about 30 “simple” closure operators and in addition at least 18
usually infinite families of such operators (depending on the signature). Some more
have been realized in the meantime and very likely it is only the “top of an iceberg”.

Unfortunately our interests developed into different directions after that time.

I wish Istvdn all the best for his future, good health, good ideas, and all the
necessary strength for successful work and his private life,

Darmstadt, October 2002

Peter RBurmeistea

References

[ABN81] H.Andréka, P.Burmeister, . Németi. Quasivarieties of partial algebras —
A unifying approach towards a two-valued model theory for partial alge-
bras. Studia Sci. Math. Hungar. 16, 1981, pp. 325-372.

[AN82] H. Andréka, I. Németi. A general aziomatizability theorem formulated in
terms of cone-injective subcategories. In: Universal Algebra (Proc. Coll.
Esztergom 1977), Collog. Math. Soc. J. Bolyai, Vol. 29, North-Holland
Publ. Co., Amsterdam, 1982, pp. 13-35.

[AN83] H. Andréka, I. Németi. Generalization of the concept of variety and quasi-
variety to partial algebras through category theory. Dissertationes Math-
ematicae (Rozprawy Mat.) No. 204, Warszawa, 1983.

[B70] P.Burmeister. Free partial algebras. J. reine und angewandte Math. 241,
1970, pp. 75-86.

[B71] P.Burmeister. Primitive Klassen partieller Algebren. Habilitation thesis,
University of Bonn, 1971.



[B86)]

[NSas82]

P.Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Introduction to Theory and Application of Partial Algebras — Part I.
Mathematical Research Vol. 32, Akademie-Verlag, Berlin, 1986.

A “not yet debugged BTEX-translation” can be found as pdf-file in the
internet at

http://www.mathematik.tu-darmstads.de /~burmeister/

I.Németi, I.Sain. Cone-implicational subcategories and some Birkhoff-type
theorems. Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math.

Soc. J. Bolyai, Vol. 29, North-Holland Publ. Co., Amsterdam, 1982, pp.
535-578.

e e

)

|

|

r

—



- LI L! LI ‘Ll AL! Ll

- —_—

Logic, Algebra, Relativity - 2002
Conference Dedicated to the Work of Istvan Német;

November /-8, 2002
Alfréd Rényi Institute of Mathematics
Budapest, Hungary

PAPERS DEDICATED TO ISTVAN NEMETI



Algebraic and Topological Methods in Lambda Calculus

Antonino Salibra

Dipartimento di Informatica, Universita Ca’Foscari di Venezia
Via Torino 155, 30172 Venezia, Italy
salibra@dsi.unive.it

Dedicated to Istvan Németi
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Abstract. The untyped lambda calculus was introduced around 1930 by Church
as part of an investigation in the formal foundations of mathematics and logic.
Although lambda calculus is a very basic language, it is sufficient to express all
the computable functions. The process of application and evaluation reflects the
computational behaviour of many modemn functional programming languages,
which explains the interest in the lambda calculus among computer scientists.

In this paper we give an outline of the theory of lambda abstraction algebras
(LAA’s). These algebras constitute an equational class and were introduced by
Pigozzi and Salibra to provide an algebraic version of the untyped lambda cal-
culus, in the same way cylindric and polyadic algebras algebraize the first-order
predicate logic. Questions related to the functional representation of various sub-
classes of lambda abstraction algebras were investigated by Pigozzi and Salibra
in a series of papers. The problem of representability for LAA’s was solved by
Goldblatt and Salibra by showing that every LAA is isomorphic to a representable
one. Algebraic methods were also applied by Lusin and Salibra to study the struc-
ture of the lattice of lambda theories (i.e., extensions of lambda calculus that are
closed under derivation) and by Salibra to study the structure of the lattice of
the subvarieties of LAA. For every variety of LAA’s there exists a lambda theory
whose term algebra generates the variety. In particular, the variety LAA is gen-
erated by the term algebra of the minimal lambda theory. Finally, algebraic and
topological methods were applied by Salibra to study the incompleteness of the
semantics of lambda calculus.

1 Introduction

The untyped lambda calculus was introduced by Church [5] as a foundation for logic.
Although the appearance of paradoxes caused the program to fail, a consistent part of
the theory turned out to be successful as a theory of “functions as rules” (formalized as
terms of the lambda calculus) that stresses the computational process of going from the
argument to the value. Every object in the lambda calculus is at the same time a function
and an argument; in particular a function can be applied to itself. Although lambda
calculus is a very basic language, it is sufficient to express all the computable functions.




The process of application and evaluation reflects the computational behaviour of many
modern programming languages, which explains the interest in the lambda calculus
among computer scientists.

The two primitive notions of the lambda calculus are application, the operation of
applying a function to an argument (expressed as juxtaposition of terms), and lambda
(functional) abstraction, the process of forming a function from the “rule” that defines
it. Then the set /A of A-terms of lambda calculus over an infinite set I of variables is
constructed by induction as usual: every variable z is a A-term, while, if M and N are
A-terms, then so are (M N) and (Az.M) for each variable z € I.

The axioms of the untyped lambda calculus are defined by the schemes of (3)- and
(a)-conversion. The first one expresses the way of calculating a function (Az.M) on an
argument N, while the second one says that the name of bound variables does not mat-
ter. The variable-binding properties of lambda abstraction prevent variables in lambda
calculus from operating as real algebraic variables. Indeed, the equations are not always
preserved when arbitrary A-terms are substituted for variables. The rules for deriving
equations from instances of () and (3)-conversion are the usual ones from equational

calculus asserting that equality is a congruence for application and abstraction. More
precisely, consider the absolutely free algebra of A-terms:

Ay = (A, 27, d2t, 22, (1)

where, for all s, € A;,
s Mt =(st); AeM(t) = (Mzt); M =g

The lambda theory Mg is the least congruence over A including () and (8)-conversion.
The term algebra A;‘ﬁ of A3 is the quotient of A by the congruence A3. The variety

(= equational class) generated by the term algebra A;‘ﬁ is the starting point for studying

the lambda calculus by universal algebraic methods.

In [30] Salibra has shown that the variety generated by the term algebra Ay’ is
axiomatized by the finite schema of identities characterizing lambda abstraction al-
gebras (LAA’s). The equational theory of lambda abstraction algebras, introduced by
Pigozzi and Salibra in [21] and [24], constitutes a purely algebraic theory of the untyped
lambda calculus in the same spirit that Boolean algebras constitute an algebraic theory
of classical propositional logic and, more to the point, cylindric and polyadic (Boolean)
algebras of the first-order predicate logic. The equational theory of lambda abstrac-
tion algebras is intended as an alternative to combinatory logic (see Curry-Feys [9])
since it is a first-order algebraic description of lambda calculus, which allows to keep
the lambda notation and hence all the functional intuitions. Among the seven identities
characterizing LAAs, the first six constitute a recursive definition of the abstract substi-
tution operator; they express precisely the metamathematical content of 3-conversion.
The last axiom is an algebraic translation of a.-conversion.

The most natural LAA’s are algebras of functions, called functional LAA’s, which
arise as “expansions” of suitable combinatory algebras (i.e., models of lambda calcu-
lus) by the variables of lambda calculus in a natural way. The situation in algebraic
logic is analogous. The most natural cylindric (and polyadic) algebras are algebras of
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functions that are obtained by coordinatizing models of classical first-order logic. The
smallest variety that includes all the functional algebras that are most closely connected
with models of first-order logic constitutes the class of representable cylindric algebras.
It is a proper subvariety of the class of all cylindric algebras, hence non-representable
cylindric algebras exist. Much of the work in algebraic logic has been directed at finding
wider classes of representable cylindric algebras with natural intrinsic characterizations.
The main references for cilindric algebras are [14] [15]; for polyadic algebras it is [13].
We also mention here [20]. It contains an extensive survey of the various algebraic ver-
sions of quantifier logics. Questions related to the functional representation of various
subclasses of lambda abstraction algebras were investigated by Pigozzi and Salibra in
a series of papers [21], [22], [23], [24], [25]. Goldblatt [10] and Salibra-Goldblatt [31]
have solved the problem of representability for LAA’s, by showing that every LAA is
isomorphic to a functional LAA and that the class of isomorphic images of functional
lambda abstraction algebras constitutes a variety of algebras axiomatized by the finite
schema of identities characterizing LAA’s.

Algebraic methods were also applied in [29] [18] to study the structure of the lat-
tice of lambda theories. We recall that lambda theories are extensions of the untyped
lambda calculus (including (a) and (8)-conversion) that are closed under derivation.
They correspond to different operational semantics of lambda calculus (see e.g. [1])
The set of all lambda theories is naturally equipped with a structure of complete lat-
tice (see [1, Chapter 4]), with meet defined as set theoretical intersection. The bottom
element of this lattice is the minimal lambda theory A3, while the top element is the
inconsistent lambda theory. The lattice of lambda theories, hereafter denoted by AT,
has a continuum of elements and it is a very rich and complex structure. For example,
every countable partially ordered set embeds into AT by an order-preserving map, and
every interval of AT, whose bounds are recursively enumerable lambda theories, has
a continuum of elements (see Visser [35]). The lattice of lambda theories is naturally
isomorphic to the congruence lattice of the term algebra A" 7", the quotient of A by
AB. This is the starting point for studying the structure of the lattice of lambda theories
by universal algebraic methods.

In [18] Lusin and Salibra have shown that the lattice AT" of lambda theories satisfies
nontrivial quasi-identities in the language of lattices. Other quasi-identities, such as the
ET-condition and the Zipper condition (see [17]), are satisfied by AT as a consequence
of the dual isomorphism, described in [30], between AT and the lattice of subvarieties
of LAA. An identity in the language of lattices (a lattice identity, for short) is trivial if
it holds in every lattice and nontrivial otherwise. We conjecture that the lattice AT does
not satisfy any nontrivial lattice identity. However, for every nontrivial lattice identity
e, there exists a natural number n such that e fails in the lattice of lambda theories
in a language of A-terms with n constants (see [18]). In a more general result, it was
shown that the variety LAA satisfies a lattice identity e (i.e., the congruence lattices
of all LAA’s satisfy e) if, and only if, e is trivial. In other words, for every nontrivial
lattice identity e there exists a lambda abstraction algebra (not necessarily equal to the
term algebra A) T ) whose congruence lattice does not satisfy e. However, there exists
a sublattice of AT satisfying nice lattice properties. In fact, in [18] it was defined a
lambda theory J such that the lattice of all lambda theories extending 7 is shown to



satisfy a restricted form of distributivity, called meet semidistributivity, and a nontrivial
congruence identity (i.e., an identity in the language of lattices enriched by the relative
product of binary relations).

Applications of topological and algebraic methods to the semantics of lambda cal-
culus were obtained by the author in [26] [27] [28]. After Scott, mathematical models of
the untyped lambda calculus are defined by order theoretic methods and classified into
semantics according to the nature of their representable functions. Continuous seman-
tics is given in the category of complete partial orders and Scott continuous functions,
while stable and strongly stable semantics are strengthenings of the continuous seman-
tics (see e.g. [1], [4]). A model of the untyped lambda calculus univocally induces a
lambda theory through the kernel congruence relation of the interpretation function. A
semantics of lambda calculus is called (equationally) incomplete if there exists a lambda
theory which is not induced by any model in the semantics. The first incompleteness
result was obtained by Honsell and Ronchi della Rocca [16] for the continuous seman-
tics, while Gouy [12] proved the incompleteness of the stable semantics. The author has
introduced a new technique, based on topological algebras, to prove in a uniform way
the incompleteness of all denotational semantics of lambda calculus which have been
proposed so far, including the strongly stable one, whose incompleteness had been con-
jectured. This technique was applied to prove the incompleteness of any semantics of
lambda calculus given in terms of either partially ordered models with finitely many
connected components (= minimal upward and downward closed sets), or topological
models whose topology satisfies a suitable property of connectedness. In particular, it
follows that any semantics of lambda calculus given in terms of partially ordered mod-
els which are semilattices, lattices, complete partial orderings, or which have a top or a
bottom element, is incomplete.

2 Lambda Abstraction Algebras: Basic Notions and Notation

To keep this article self-contained, we summarize some definitions and results that we
need in the subsequent part of the paper. Our main references will be [30] and [25] for
lambda abstraction algebras and Barendregt’s book [1] for lambda calculus.

2.1 Lambda calculus

The two primitive notions of the lambda calculus are application, the operation of ap-
plying a function to an argument (expressed as juxtaposition of terms), and lambda
(functional) abstraction, the process of forming a function from the “rule” that defines
it.

The set A7(C) of ordinary terms of lambda calculus over an infinite set I of vari-
ables and a set C' of constants is constructed as usual [1]:

1. every variable z € I and every constant ¢ € C'is a A-term;
2. if M and N are A-terms, then so are (M N) and (Az.M) for each variable z € I.

We will write Ay for A7(0), the set of A-terms without constants.
The symbol = denotes syntactic equality.
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The following are some well-known A-terms:
i=de.x; s=Aeyzez(yz); k=Azyx; 1=Azyey;, 2= (Arec)(Az.cz).

An occurrence of a variable z in a A-term is bound if it lies within the scope of
a lambda abstraction Az; otherwise it is free. FV (M) is the set of free variables of a
A-term M. A A-term without free variables is said to be closed. A}(C) is the set of
closed A-terms of A7(C). A A-term N is free for x in M if no free occurrence of z in
M lies within the scope of a lambda abstraction with respect to a variable that occurs
free in N. M[N/z] is the result of substituting N for all free occurrences of z in M
subject to the usual provisos about renaming bound variables in M to avoid capture of
free variables in N. The above proviso is empty if NV is free for z in M.

The axioms of the \B-calculus are as follows: M and N are arbitrary A-terms and
x, y variables.

(a) Az.M = Ay.M[y/z] forany variable y that does not occur free in M;

(8) (A\&.M)N = M[N/z] forany N free for z in M.

(B)-conversion expresses the way of calculating a function (Az.M) on an argument
N, while (a)-conversion says that the name of bound variables does not matter. The
rules for deriving equations from instances of («) and () are the usual ones from equa-
tional calculus asserting that equality is a congruence for application and abstraction.

A M-term M € AY(C) is solvable if there exist an integer n and Ny, ..., Np €
Ar(C) such that M Ny ... N, =i. M € A[(C) is solvable if the closure of M, that is
ATy ...2n.M with {z;...z,} = FV(M), is solvable. M € A;(C) is unsolvable if it
is not solvable. Unsolvable A-terms represent “indefinite” computational processes.

A compatible \-relation T is any set of equations between A-terms that is closed
under the following rules, for all A-terms M, N and P:

-M=NeT =X M=X.NeT;
-M=NeT=MP=NPET,
-M=Ne€T=PM=PNEeT.

We will write on occasion 7 - M = N (or M =7 N)for M =N € T.

A lambda theory T is any compatible A-relation which is an equivalence relation
and includes (o) and (3) conversion. The set of all lambda theories is naturally equipped
with a structure of complete lattice with meet defined as set theoretical intersection. The
join of two lambda theories 7" and & is the least equivalence relation including 7 U S.
The least lambda theory including a set W of equations will be denoted by W+.

AB is the least lambda theory, while A7 is the least extensional lambda theory (ax-
iomatized by i = 1). A is the lambda theory generated by equating all the unsolvable
A-term (ie., H = Hg where Ho = {M = N | M, N closed and unsolvable}), while
H* is the unique maximal consistent extension of H (see [1]).

A lambda theory T is sensible if H C T. T is semisensible if T does not equate a
solvable and an unsolvable.



2.2 Lambda abstraction algebras

Let I be a nonempty set. The similarity type of lambda abstraction algebras of dimen-
sion I is constituted by a binary operation symbol *“.” formalizing application, a unary
operation symbol “Az” for every = € I, and a constant symbol (i.e., nullary operation
symbol) “z” for every z € I. The elements of I are the variables of lambda calculus al-
though in their algebraic transformation they no longer play the role of variables in the
usual sense. In the remaining part of the paper we will refer to them as A-variables. The
actual variables of the similarity type of lambda abstraction algebras are referred to as
context variables and denoted by the Greek letters &, v, and y possibly with subscripts.

The terms of the similarity type of lambda abstraction algebras are called \-contexts.
They are constructed in the usual way: every A-variable z and context variable isa
A-context; if ¢ and s are A-contexts, then so are ¢ - s and Az (t).

Because of their similarity to the terms of the lambda calculus we use the standard
notational conventions of the latter. The application operation symbol “” is normally
omitted, and the application of ¢ and s is written as juxtaposition¢s. When parentheses
are omitted, association to the left is assumed. The left parenthesis delimiting the scope
of a lambda abstraction is replaced with a period and the right parenthesis is omitted.
For example, Az (ts) is written Az.ts. Successive A-abstractions Az Ay)z . . . are written
ALY 555

An occurrence of a A-variable z in a A-context is bound if it falls within the scope of
the operation symbol Az; otherwise it is free. The free A-variables of a A-context are the
A-variables that have at least one free occurrence. A A-context without free A-variables
is said to be closed. Note that A-contexts without any context variables coincide with
ordinary terms of the lambda calculus without constants.

Our notion of a A-context coincides with the notion of context defined in Barendregt
([1], Def.14.4.1); our context variables correspond to Barendregt’s notion of a ‘hole’.
The main difference between Barendregt’s notation and our’s is that ‘holes’ are denoted
here by Greek letters &, u, . . ., while in Barendregt’s book by [],[]1, . . .. The essential
feature of a A-context is that a free A-variable in a A-term may become bound when
we substitute it for a ‘hole’ within the context. For example, if t(¢) = Az.z(\y.€) is
a A-context, in Barendregt’s notation: ¢([ ]) = Az.z(\y.[]), and M = zy is a A-term,
thent(M) = Az.z(Ay.zy).

A lambda theory has a natural algebraic interpretation. Let 7 be a lambda theory
over the language A;(C') and let A;(C) be the absolutely free algebra in the similarity
type of lambda abstraction algebras (of dimension I) over the set C of generators:

A1(C) = (A1(C), A1) AgA1(C) gA1(C)y )
where for M, N € A;(C):
M AN = (MN); XM O(M) = Az.M); 22O = ¢,
We will write Ay for A7(()). The lambda theory 7 is a congruence (i.e. a compatible

equivalence relation) on A7 (C'). We denote by A7 (C') the quotient of A;(C)) by 7 and
call it the term algebra of the lambda theory 7.
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We say that 7 satisfies an identity between contexts ¢(¢y, . - cybn) = (1, ., En)
if the term algebra A7 (C) of T satisfies it; i.e., if all the instances of the above identity,
obtained by substituting A-terms for context variables in it, fall within the lambda the-
ory: T F t(My,---, M) = w(My,---, M), for all A\-terms My,---, My € Ar(C).
For example, every lambda theory satisfies the identity (Az.z)¢ = & because A3 +

(Az.z)M = M for every A-term M.
Lambda abstraction algebras are meant to axiomatize those identities between con-

texts that are valid for the lambda calculus.
We now give the formal definition of a lambda abstraction algebra (see [22], [23],

[25], 1291, [30]).

Definition 1. By a lambda abstraction algebra of dimension / we mean an algebraic

structure of the form:
A= (A4, A Az? 2B ser

satisfying the following identities between A-contexts, for all z,y, z € I:
(B1) Az.2)€ =&;

(B2) Qz.y) =y, z#u;

(Bs) (Az.&)z = &;

(Bs) Azz&)p = Az §;

(B5) (Ae.bp)v = (Az.)v((Az.p)v);

(Bs) Azy.p)((Ay-€)z) = dy.(Az.p)((My£)z), z#y,2Fy;

(a) Ae.(\p)z = Ay.(Ae.(M-6)2)y, = #v.

I is called the dimension set of A. -2 is called application and Az is called )-
abstraction with respect to .

The class of lambda abstraction algebras of dimension / is denoted by LAA and the
class of all lambda abstraction algebras of any dimension by LAA. We also use LAA;
as shorthand for the phrase “lambda abstraction algebra of dimension /”, and similar
for LAA. An LAA is infinite dimensional if I is infinite.

LAA; is a variety (= equational class) for every dimension set /, and therefore it
is closed under the formation of subalgebras, homomorphic (in particular isomorphic)
images, and Cartesian products.

In [25] it is shown the following result.

Proposition 1. ([25]) Let T be a lambda theory over the language /A 1(C). Then the
term algebra AT of T is an LAA;.



We note here one very useful immediate consequence of the axioms (31) — ()
and (a): inany LAA; A the functions Az are always one-one, i.e., forall z € I,

Az.a=Az.b iff a=0b, forall a,be A.

In fact, if Az.a = Az.b, then by (f3), a = (Az.a)z = (Az.b)z = b.

An LAA with only one element is said to be trivial. It is interesting that any non-
trivial LAA; A of positive dimension is infinite, since the one-one map Az is not onto.
To see this, assume by way of contradiction that z is in the range of Az; then z = A\z.b
for some element b € A. Since A is nontrivial, there exists an element a € A such that
a # x. Then a contradiction results from (3;) and (34):

a=(Az.z)a= (Az.Xz.b)a= dx.b=z.

Definition 2. ([24]; Def. 1.3) Let A be an LAA;. Let a € A and z € 1. a is said to
be algebraically dependent on z (over A) if (\z.a)z # a for some z € I; otherwise
a is algebraically independent of = (over A). The set of all x € I such that a is

algebraically dependent on x over A is called the dimension set of a and is denoted
by Aa; thus:

Aa={z€l:(\zr.a)z#a forsome z¢€I}.

a is finite (infinite) dimensional if Aa is finite (infinite). An element a is called zero-
dimensional if Aa = (. We denote the set of zero-dimensional elements by Zd A.

For example, if @ = zy then a is algebraically dependent on z because (Az.zy)z =
zy # xy forevery z € I'\ {z,y}.

Proposition 2. ([24]; Prop. 1.7) Let A € LAA;, a,b€ A, andz € I.

1. A(ab) C AaU Ab.
2. A(Az.a) = Aa)\ {z}.
3. Az C {z}, with equality holding if A is nontrivial.

If M is a A-term without constants and A is an LAA[, then M# will denote the
value of M in A when each A-variable z occurring in M is interpreted as . By
Prop. 2 the dimension set of M is a subset of the set of free A-variables of M.

Suitable reducts of arbitrary LAA’s turn out to be combinatory algebras. Recall that
a combinatory algebra is an algebra C = (C, -€, k€, s€), where -€ is a binary opera-
tion and k€, s€ are constants, satisfying the following identities: (as usual the symbol
- and the superscript € are omitted, and association is to the left)

kzy = z; seys = x3(yz).
Let A be an LAA;. By the combinatory reduct of A we mean the algebra
Cra = {4, * K )

where
kA = (A\zy.2)® and s® = (Azyz.zz(yz))A.
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Cr A is a combinatory algebra [31]. A subalgebra of the combinatory reduct of an LAA;
A (i.e., a subset of A containing k” and s# and closed under ) is called a combina-
tory subreduct of A. The zero-dimensional subreduct of A is the combinatory subreduct

ZAA = (Zd A, P 5h),

whereZdA = {a € A : Aa = 0 }, the set of zero-dimensional elements of A..

The open term model of a lambda theory T, as defined in Barendregt’s book [1], is
the combinatory reduct Cr A7 (C) of the term algebra A7 (C), while the closed term
model of T is its zero-dimensional subreduct Zd A7 (C).

2.3 Locally finite LAA’s

There is a strong connection between the lambda theories and the subclass of LAA’s
whose elements are finite dimensional.

Definition 3. ([24]; Def. 2.1) A lambda abstraction algebra A is locally finite ifit is
of infinite dimension (i.e., I is infinite) and every a € A is of finite dimension (i.e.,
IAal < Vo).

The class of locally finite LAA;’s is denoted by LFA;, which is also used as short-
hand for the phrase “locally finite lambda abstraction algebra of dimension I”.

For every infinite I the term algebra AT of alambda theory 7 is locally finite. This
is a direct consequence of the trivial fact that every A-term is a finite string of symbols

and hence contains only finitely many A-variables.
The following result characterizes those congruences on the algebra A1 (C' ) (defined

in Section 2.2) that are lambda theories.

Lemma 1. ([30]; Lemma. 8) Let I be an infinite set. A congruence 6 on Ar(C)isa
lambda theory over the language A;(C) if, and only if, the following two conditions
are satisfied:
1. The quotient algebra A;(C)/0 is an LAA;
2. (\z.c)yOcforallc € Candallz,y € I, i.e, the equivalence class ¢/0 of every
element ¢ € C is a zero-dimensional element of A1(C)/6.

Proposition 3. ([25]; Prop. 2.4) Let I be an infinite set. An algebra A in the similarity
type of lambda abstraction algebras of dimension I is (isomorphic to) the term algebra
of a lambda theory if, and only if, it is an LFA[.

Recall that the LAA;-free algebra over an empty set of generators is the quotient of
the absolutely free algebra A of A-terms by the smallest congruence ¢ making A 1/6

an LAA I
The following proposition provides an algebraic characterization of the term algebra

of Ag.

Proposition 4. ([30]; Prop. 10) Let I be an infinite set. The term algebra Az” of the
minimal lambda theory A3 is the LAA[-free algebra over an empty set of generators.

Proposition 5. ([30]; Prop. 11) Let I be an infinite set. For all \-terms t,u € Aj,
LAA; Et=uiff \GFt =u.



3 Subvarieties of LAA’s and Lambda Theories

In this Section we briefly survey the main results connecting lambda abstraction alge-
bras, lambda theories and functional (i.e., representable) lambda abstraction algebras.

In [30] it was shown that the complete lattice of the subvarieties of LAA; is iso-
morphic to the complete lattice of the lambda theories over the language A;. It follows
that every variety of lambda abstraction algebras is generated by the term algebra of
a suitable lambda theory over the language A; (with an empty set of constants). In
particular, the term algebra of the least lambda theory A3 generates the variety LAA;.
Hence the explicit finite equational axiomatization for the variety of lambda abstrac-
tion algebras provides also an explicit axiomatization of the identities between contexts
satisfied by the term algebra of AJ3. Note that the lattice of all lambda theories is nat-
urally isomorphic to the lattice of all congruences of the term algebra A;‘ﬂ . We would
like to explicitly mention at this point that the equational theory of lambda abstraction
algebras (axiomatized by (1) — (Bs) and (c)) is a conservative extension of lambda
beta-calculus: for any two A-terms M and N, the identity M = N between A-terms
is a logical consequence of (1) — (fs) and («) (in symbols, LAA; = M = N) if,
and only if, M = N is derivable in the lambda beta-calculus. This can be immediately
inferred from the fact that LAA; is generated as a variety by the term algebra of the
lambda theory A3 (see Thm. 2 below and Prop. 5 above).

In Thm. 1 below it is shown that the satisfiability of an identity between contexts
is equivalent to the satisfiability of a suitable identity between A-terms. This result is
applied in the proof of Thm. 2 below (see [30]).

Lett(¢1,...,&,) be a A-context over Z (i.e., T = z; ...z is the finite sequence of
A-variables which contains all the A-variables occurring in ¢ either as constants z; or as
A-abstractions Az;). Let § = y; ...y, be an n-tuple of A-variables such that 7Nz = 0.
Define

Hn @y oo By ey Y B - o Bk
as the A-term obtained from the A-context ¢ by substituting the A-term y;z; . ..z for
all the occurrences of the context variable §; int ( = 1,..., n). (Recall that y;z; . . .z

means (... ((yiz1)z2)...)zk).) i

Ify = y1...yn is a sequence of A-variables and € = &, .. .&, is a sequence of con-
text variables, we will write A7 for Ay; . .. yn; ¢(€) fort(&1, ..., &n);and t (01 F, . . ., ynT)
for t(y1z1...2k,...,yn®1 ... 2x). We always assume that £ and 7 have the same
length.

Theorem 1. ([30]) Let A be an infinite dimensional LAA;. Let t(€), u(€) be A-contexts
overT=2zy...xxandletY=y ...y, suchthatyNT = (. Then,

A Et(E) = u() ifandonly if A = (T, ..., ynT) = u(UT, . .., Yo D).

Let V be an arbitrary variety of algebras and A € V. Then A is said to be generic
inV if an identity holds in A iff it holds in V; equivalently, A is generic iff it generates
YV as a variety.

Recall from Section 1 that, if 7 is a lambda theory we denote by A7 the term
algebra of the lambda theory 7. So, A}\ﬂ is the term algebra of the minimal lambda
theory A3.
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Theorem 2. ([30]) For any infinite set I, the variety generated by the term algebra A}\ﬁ
of the minimal lambda theory A\ is the variety of LAA; s, in symbols,

LAA; = HS P(A)).

It follows that the set of identities between A-contexts true in the term algebra of A3
is axiomatized by the identities (51 )-(8s) and («) characterizing the variety of lambda
abstraction algebras.

The class FLA of (isomorphic images of) functional LAA’s is defined, for example,
in [24]. There is a strong relationship between the class FLA and the class of models of
lambda calculus (see [24] [25]). We recall that, although lambda calculus has been the
subject of research by logicians since the early 1930’s, its model theory developed only
much later, following the pioneering model construction made by Dana Scott. There
exists an intrinsic characterization of what might be meant by mathematical model of
the untyped lambda calculus, as an elementary class of combinatory algebras called \-
models ([1, Def. 5.2.7]). They were first axiomatized by Meyer [19] and independently
by Scott [32]; the axiomatization, while elegant, is not equational. The functional repre-
sentation theorem (Thm. 3 below) connects lambda abstraction algebras and models of
lambda calculus. Indeed, every lambda abstraction algebra is isomorphic to a functional
lambda abstraction algebra arising from a suitable A-model.

The proof that FLA is a variety was given by Goldblatt [10], while the proof that
FLA = LAA was obtained in Salibra-Goldblatt [31] with a very technical and difficult
proof. One of the consequences of Thm. 2 is a simplification of the proof of the general
representation theorem for lambda abstraction algebras (see [30]).

Theorem 3. ([10] [31]) For any infinite set I,
LAA; = FLA;.

There exists a one-to-one correspondence between the set of lambda theories over
the set Ay of A-terms (without constants) and the set of congruences over the term alge-
bra of the minimal lambda theory A3. So, the set of lambda theories over A; constitutes
a complete lattice.

We now characterize the lattice of subvarieties of the variety LAA;. The variety
generated by the term algebra of a lambda theory 7~ will be denoted by LAAT.

Theorem 4. ([30]) Let V be a subvariety of the variety LAA|. Then there exists exactly
one lambda theory T over Ay such that the term algebra AT is genericin V:

YV =HSP(A])=LAA].
The following theorem is now immediate.

Theorem 5. ([30]) There is a complete lattice dual isomorphism between the lattice
of subvarieties of LAA[ and the lattice of lambda theories over Ar (or the lattice of
congruences over the term algebra of the minimal lambda theory )\(3).

The above theorem has important consequences for the structure of the lattice of
lambda theories as it will be explained in the next Section.




4 The Structure of the Lattice of Lambda Theories

Techniques of universal algebra were applied in [18] to study the properties of the lattice
AT of lambda theories. As a consequence of the dual isomorphism between \T" and the
lattice of subvarieties of LAA (see Thm. 5), some nontrivial quasi-identities, such as the
ET condition and the Zipper condition (see [17]), hold in AT'. Moreover, the following
other results hold:

(1) A lattice identity e holds in LAA if, and only if, it is trivial;
(ii) For every nontrivial lattice identity e, there exists a natural number n such that e
fails in the lattice of lambda theories in a language of A-terms with n constants.
(iii) There exists a sublattice of AT satisfying good lattice properties.

The language of bounded lattices is constituted by two binary operators, “-” (meet)
and “+” (join), and two constants “0” (bottom) and “1” (top). If ¢ is an identity or
a quasi-identity in the language of bounded lattices and AT is the lattice of lambda
theories, we write AT" |= ¢ if the (quasi-)identity ¢ holds in the lattice \T".

The lattice AT satisfies nontrivial quasi-identities.

Theorem 6. ([18]) Let T, G and Sy, (k € K ) be lambda theories. Then
\T ,: UkEKSk =1 TZ g(Sk +TG) (k c I{) =g <T.

The ET condition and the Zipper condition defined below hold in every lattice dually
isomorphic to the lattice of subvarieties of a variety (see [17]). Then the following two
corollaries follows from Thm. 5 above.

Corollary 1. (ET Condition) Let (Sk : k € K) be a family of lambda theories. If
Ukex Sk = Iar
then there is a finite sequence Sy, . . ., S, with S; € {Sk : k € K} for j < n such that:
(((-- - (((S0G) + S$1)G) + 82)G) + ...+ S)G =G 3)
for every lambda theory G.
Corollary 2. (Zipper Condition) Let T, G and (S : k € K) be lambda theories. Then,
AT EUkeSk=1, Si§ =T (k€eK) = G=T.

Corollary 3. Let S and T be two lambda theories. If S + T = 1yxr and SG = TG
thenG < SandG < T.

Two well-known lattices cannot be sublattices of \T".

Corollary 4. Let My, be the lattice having k atoms, a zero and one, and no other el-
ements. My cannot be a sublattice of AT, provided the top element is the inconsistent
lambda theory 1,7.



In every lattice L the modularity law is equivalent to the requirement that L has no
sublattice isomorphic to the “pentagon” N5. The pentagon N is constituted by five
distinct elements 0, a,b,c,1such thata < ¢,1 =c+b=a+band 0 = ab = cb.
In [29] it was shown the following result. Recall from Section 2.1 the definitions of the
lambda terms i, £2 and of the lambda theories H, H*.

Theorem 7. ([29]) Let T be the lambda theory generated by the equation §2 = i. The
lattice AT is not modular because the pentagon N, defined by

0=TH"; 1=1yp; b=T; a=H+(TH"); c=H*,
is a sublattice of \T.

An identity in the binary symbols {-, +, o} is called a congruence identity, while
an identity in the language {-, +} of lattices is called a lattice identity. We interpret the
variables of a congruence (lattice) identity as congruence relations, and for arbitrary
binary relations -y and § we interpret v + & as the congruence relation generated by the
union of the two relations, v - § as the intersection and «y o § as the composition of the
two relations (as usual, we will write yé for v - §). We say that a variety V satisfies a
congruence (lattice) identity if it holds in all congruence lattices of members of V. A
congruence identity is trivial if it holds in the congruence lattice of any algebra, while
a lattice identity is trivial if it holds in every lattice. Varieties are often characterized in
terms of congruence identities.

The following theorem is a consequence of the sequentiality theorem of lambda cal-
culus (see [1, Thm. 14.4.8]). It has no immediate consequence for the lattice of lambda
theories.

Theorem 8. ([18]) Let T be a semisensible lambda theory. Then the variety LAAT
generated by the term algebra of T satisfies a congruence identity e if, and only if, e is
trivial.

Notoce that there exists a continuum of semisensible lambda theories and that all
the most important lambda theories, such as A8, An, H, H* etc., are semisensible.

As a consequence of the above theorem, for every nontrivial lattice identity e, there
exists an LAA; A whose congruence lattice does not satisfy e. In the following theorem
we show that A can be chosen a term algebra if we modify the language of lambda
calculus with a finite number of constants.

As a matter of notation, A7 (n) is the set of lambda terms constructed from an infinite
set I of A-variables and a finite set of constants of cardinality n.

Theorem 9. ([18]) Let e be a nontrivial lattice identity. Then there exists a natural
number n such that the identity e fails in the lattice of the lambda theories over the
language Ar(n).

There exists a sublattice of AT satisfying good lattice properties. First we introduce
a lambda theory [, whose consistency is obtained in [18] by using intersection types
for defining a filter model for it (see [2], [8]). Then the equations defining .7 are used to
define a semilattice term operation on the term algebra A}7 . It follows from this result
that the lattice of all lambda theories including 7 has the lattice properties described in
Thm. 12 below.




Theorem 10. ([18]) The lambda theory J, axiomatized by
Qer=g; LQey=0ys; De(2yz)= 2(Raxy)z, 4)
is consistent.

Theorem 11. ([18]) The variety LAA}7 generated by the term algebra of the lambda
theory J satisfies a nontrivial congruence identity.

Theorem 12. ([18]) The interval sublattice [J) = {T : J C T} of the lattice of
lambda theories satisfies the following properties:

(i) The finite lattice M3 is not a sublattice of [J ).
(ii) [J) satisfies a nontrivial congruence identity.

(iii) [J) is congruence meet semidistributive, i.e. the following implication holds for all
lambda theories S, T,G € [J).

ST =8G = ST =S8(T +6).

5 Order incompleteness and topological incompleteness

In this Section we survey some results of incompleteness for the semantics of lambda
calculus (see [26] [27] [28]).

A model of the untyped lambda calculus univocally induces a lambda theory (i.e., a
congruence relation on A-terms closed under a- and S-conversion) through the kernel
congruence relation of the interpretation function. A semantics of lambda calculus is
called (equationally) incomplete if there exists a lambda theory which is not induced by
any model in the semantics.

One of the most interesting open problems of lambda calculus is whether every
lambda theory arises as the equational theory of a non-trivially ordered model (in other
words, whether the semantics of lambda calculus given in terms of non-trivially ordered
models is complete). Selinger [33] gave a syntactical characterization, in terms of so-
called generalized Mal’cev operators, of the order-incomplete lambda theories (i.e.,
the theories not induced by any non-trivially ordered model). A lambda theory 7 is
order-incomplete if, and only if, there exist a natural number n > 1 and a sequence
M, ..., M, of closed A-terms such that the following Mal’cev conditions are satisfied:

¢ =7 Mizyy; Mizzy =7 Mip1zyy; Mpzey =7 y (1 <i<n).

In other words, 7 is order-incomplete if, and only if, the variety of LAA’s generated
by the term algebra of 7 is (n + 1)-permutable for some n > 1. Plotkin and Simpson
(see [33]) have shown that the above Mal’cev conditions are inconsistent with lambda
calculus for n = 1, while Plotkin and Selinger (see [33]) obtained the same result for
n = 2. It is an open problem whether n can be greater than or equal to 3.

We may relax the order-incompleteness problem by considering semantics of lambda
calculus given in terms of partially ordered models satisfying suitable conditions. For
example, we have shown in [26] [27] the incompleteness of any semantics of lambda
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calculus given in terms of partially ordered models which are semilattices, lattices, com-
plete partial orderings, or which have a top or a bottom element. Moreover, we have
obtained the incompleteness of any semantics of lambda calculus, given in terms of
topological models satisfying a suitable property of connectedness called closed-open-
connectedness. The proof is based on a general theorem of separation for topological
algebras.

‘We begin the technical part of this Section by introducing the notion of a semisub-
tractive algebra. These algebras satisfy a very weak form of subtractivity. We recall
that the notion of subtractivity in Universal Algebra was introduced by Ursini [34]: an
algebra is subtractive if it satisfies the identities

s(e,z)=0; s(g,0)=2 5)

for some binary term s and constant 0. Subtractive algebras abound in classical algebras
and in algebraic logic.

Definition 4. An algebra A is semisubtractive if there exist a binary term s(z,y) and
a constant 0 in the similarity type of A such that

sz, m) =0

A partially ordered algebra is a pair (A, <), where A is an algebra and < is a
compatible (i.e., the basic operations are monotone) partial order on A.

A semisubtractive algebra is trivial if s(z, y) = 0 for all  and y. A semisubtractive
algebra is trivial if it admits a compatible partial order with a bottom element and a top
element.

As a matter of notation, w denotes the first infinite ordinal, i.e., the set of natural
numbers.

Definition 5. Let A be a semisubtractive algebra. The subtraction sequence (c,,) of a
pair (a,b) € A? is defined by induction as follows:

c1 = s(a,b); cny1 = s(cn,0). 6)

We say that (a, b) has order k € w if cx # 0, while (a, b) has order w if ¢k # 0 for all
k€w.

Notice that, if a pair (a,b) has order k, then a # b and (a, b) has order n for all
n<k.

The inequality graph of a partially ordered algebra (A, <) has the elements of A as
nodes, while an edge connects two distinct nodes @ and b if either a < b or b < a. Two
nodes are in the same connected component if they are either not distinct or joined by a
path. The equivalence classes of the relation “to be in the same connected component”
define the partition of the inequality graph into connected components. A connected
component can be also characterized as a minimal subset of A which is both upward
closed and downward closed.

Lemma 2. Let (A, <) be a semisubtractive partially ordered algebra. If a pair (a, b) €
A? has order w, then a and b are in distinct connected components (in the inequality
graph of A).



Theorem 13. ([27], [28]) Any semantics of the untyped lambda calculus, given in terms
of partially ordered models which have only finitely many connected components (in the
inequality graph), is incomplete.

Corollary 5. Any semantics of lambda calculus given in terms of partially ordered
models which are semilattices, lattices, complete partial orderings, or which have a top
or a bottom element, is incomplete.

A topological algebra is a pair (A, 7), where A is an algebra and 7 is a topology on
A making the basic operations of A continuous.

We recall that separation axioms in topology stipulate the degree to which distinct
points may be separated by open sets or by closed neighbourhoods of open sets. In
Thm. 14 below we prove that in every semisubtractive Ty-topological algebra every pair
of elements of order 3 is T, ,-separable. We recall that a and b are T3, /2 -separable if
there exists two open sets U and V such thata € U, b € V and the closures of U and
V have empty intersection.

We were inspired with Bentz [3] and Coleman [6] [7] for the idea of this theorem
and for the techniques used in its proof.

Theorem 14. ([26], [28]) If (A, T) is a semisubtractive Ty-topological algebra, then
every pair (a,b) € A? of order 3 is T3,,,-separable.

Connectedness axioms in topology examine the structure of a topological space in
an orthogonal way with respect to separation axioms. They deny the existence of cer-
tain subsets of a topological space with properties of separation. We introduce a strong
property of connectedness, called closed-open-connectedness, which is orthogonal to
the property of T5, /»-separability, and it is satisfied by a topologlcal space if there exist
no T3, Ja -separable elements.

Definition 6. We say that a space is closed-open-connected if it has no disjoint clo-
sures of open sets. In other words, if, for all open sets U and V, we have that the
closures of U and V' have empty intersection.

The following proposition provides a wide class of topological spaces whose topol-
ogy is closed-open-connected.

Proposition 6. Let (X, 7) be a To-topological space, whose specialization order <.,
defined by

a <; b iffa belongs to the closure of set {b},

satisfies the following property: every pair of nodes of the inequality graph of (X, <;)
is joined by a path of length less or equal to 3. Then (X, T) is closed-open-connected.

Corollary 6. Every Ty-topological space (X, T), whose specialization order either ad-
mits a bottom (top) element or makes X an upward (downward) direct set, is closed-
open-connected.




In particular complete partial orderings with the Scott topology (see [1]) are closed-
open-connected.

As a consequence of Thm. 14 of separation, we get the topological incompleteness
theorem.

A topological model of the lambda calculus is a topological algebra (C, 7), where
C is a model of lambda calculus.

Theorem 15. ([26], [28]) Any semantics of the lambda calculus given in terms of
closed-open-connected Ty-topological models is incomplete.

A topological model, whose topology is Ty but not 77, has a non-trivial specializa-
tion order. This means that there exists at least two elements a and b such that a belongs
to the closure of set {b}. Then from Thm. 13 and from Thm. 15 it follows the incom-
pleteness of any semantics of lambda calculus given in terms of Tp-topological models,
whose topology is either closed-open-connected or admits a specialization order with a
finite number of connected components.

References

1. Barendregt, H.P., “The lambda calculus: Its syntax and semantics”, Revised edition, Stud-
ies in Logic and the Foundations of Mathematics, vol. 103, North-Holland Publishing Co.,
Amsterdam, 1985.

2. H.P. Barendregt, M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the com-
pleteness of type assignment,J. Symbolic Logic, 48 (1984), 931-940.

3. W. Bentz, “Topological implications in varieties”, Algebra Universalis, 42 (1999), pp. 9-16

4. C. Berline, “From computation to foundations via functions and application: The A-calculus
and its webbed models”, Theoretical Computer Science 249 (2000), pp. 81-161

5. Church, A. “The calculi of lambda conversion”, Princeton University Press, Princeton, 1941.

6. J.P. Coleman, “Separation in topological algebras”, Algebra Universalis, 35 (1996), pp. 72-84

7. J.P. Coleman, “Topological equivalents to n-permutability”, Algebra Universalis, 38 (1997),
pp- 200-209

8. M. Coppo, M. Dezani-Ciancaglini, F. Honsell and G. Longo, Extended type structures and
filter lambda models, Logic colloquium *82 (Florence, 1982), North-Holland, Amsterdam
(1984) 241-262.

9. Curry, H. B. and R. Feys, “Combinatory Logic, Vol. I”, North-Holland Publishing Co., Ams-
terdam, 1958.

10. Goldblatt, R., “The functional lambda abstraction algebras form a variety”, DMTCS’96,
Springer Series in Discrete Mathematics and Theoretical Computer Science, Springer-Verlag,
Singapore (1997), pp. 226-243.

11. Goldblatt, R., “Enlargements of functional algebras for the lambda calculus” Theoretical
Computer Science vol 198 (1998), pp. 177-200.

12. X. Gouy, Etude des théories équationnelles et des propriétés algébriques des modéles stables
du A-calcul, These, Université de Paris 7 (1995)

13. Halmos, P. “Algebraic Logic”, Chelsea Publishing Co., New York, 1962.

14. Henkin, L., J.D. Monk and A. Tarski, “Cylindric algebras, Parts I and II”, North-Holland
Publishing Co, Amsterdam, 1971, 1985.

15. Henkin, L., J.D. Monk, A. Tarski, H. Andréka, and I. Németi, “Cylindric set algebras”, Lec-
ture Notes in Mathematics, No. 883, Springer-Verlag, Berlin, 1981.



16. Honsell, F,, S. Ronchi della Rocca, “An Approximation Theorem for Topological Incom-
pleteness of Lambda Calculus”, Journal of Computer and System Sciences, vol. 45 (1992),
pp. 49-75.

17. W. A. Lampe, Further properties of lattices of equational theories, Algebra Universalis, 28
(1991), 459-486.

18. Lusin, S., and A. Salibra “The Lattice of Lambda Theories”, Technical Report CS-2002-01,
Dipartimento di Informatica, Universita’ Ca’Foscari di Venezia, 2002. (to appear)

19. Meyer, A.R., “What is a model of the lambda calculus?”, Information and Control, vol. 52
(1982), pp. 87-122.

20. Németi, L., “Algebraizations of quantifier logics. An introductory overview”, Studia Logica
vol. 50 (1991), pp. 485-569

21. Pigozzi, D., and A. Salibra, “An introduction to lambda abstraction algebras”, Notas de Log-
ica Matematica, Universidad Nacional del Sur, Bahia Blanca, Argentina, vol. 38 (1993), pp.
93-112.

22. Pigozzi, D., and A. Salibra, “Dimension-complemented lambda abstraction algebras”, Work-
shops in Computing, Springer-Verlag, London (1994), pp. 131-138.

23. Pigozzi, D., and A. Salibra, “A representation theorem for lambda abstraction algebras”,
Lecture Notes in Computer Science, vol. 711, Springer-Verlag, Berlin, 1993, pp.629-639.

24. Pigozzi, D., and A. Salibra, “Lambda abstraction algebras: representation theorems”, Theo-
retical Computer Science, vol. 140 (1995), pp. 5-52.

25. Pigozzi, D., and A. Salibra, “Lambda abstraction algebras: coordinatizing models of lambda
calculus”, Fundamenta Informaticae, vol. 33 (1998), pp. 149-200.

26. Salibra, A., “A continuum of theories of lambda calculus without semantics”, LICS’01, 16th
Annual IEEE Symposium on Logic in Computer Science (2001), Boston, USA.

27. Salibra, A., “Towards lambda calculus order-incompleteness”, in: J. Lévy (ed.), Workshop
on Bohm thcorem applications to Computer Science Theory (BOTH 2001) Electromcs Notes
in Theoretical Computer Science, Vol. 50 No.2 (2001), pp. 147-160

28. Salibra, A, “Topological incompleteness and order incompleteness of lambda calculus”,
Technical Report CS-2001, Dipartimento di Informatica, Umversna Ca’ Foscan di Venezia,
2001. (to appear)

29. Salibra A., “Nonmodularity results for lambda calculus” Fundamenta Informatzcae, vol. 45
(2001), pp.379-392.

30. Salibra, A., “On the algebraic models of lambda calculus”, Theoretical Computer Science,
vol. 249 (2000), pp.197-240.

31. Salibra, A., and R. Goldblatt, “A finite equational axiomatization of the functional algebras
for the lambda calculus”, Information and Computation, vol. 148 (1999), pp.71-130.

32. Scott, D.S., “Lambda calculus: some models, some philosophy”, The Kleene Symposium,
North-Holland, Amsterdam, 1980.

33. Selinger, P, “Order-incompleteness and finite lambda models”, Eleventh Annual IEEE Sym-
posium on Logic in Computer Science (1996)"

34. A. Ursini, “On subtractive varieties, I”, Algebra Universalis, 31 (1994), pp.- 204-222

35. A. Visser, “Numerations, A-calculus and arithmetic”, To H.B. Curry: Essays on Combinatory
Logic, Lambda-Calculus and Formalism (J.R. Hindley and J.P. Seldin eds.), Academic Press,
New York (1980), pp. 259-284



A SIMPLIFIED FINITE AXIOMATIZATION FOR THE SAIN
TYPE ALGEBRAIZATION OF THE FIRST ORDER LOGIC

SANDOR CSIZMAZIA

ABSTRACT. The problem of finding a finite axiomatization to the algebraic counterpart of the first order logic
was solved by Ildiké Sain. She gave a finite scheme of axioms, however she stated as an open problem the
task of giving amore simple one. In this work we give a small elegant system of axioms, solving the above
mentioned problem. I would like to thank Ildiké Sain and Istvan Németi to inspire this work.

This paper is a continuation of the work was initiated earlier together with Ildik6 Sain and announced
in (I.Sain 87] I. Thm 1. (p.3.).

The problem of finding a ”finite scheme” algebraization of the first order logic goes back to [J.D.Monk
70] and [L.Henkin,J.D.Monk 74] and was recalled by [I.Sain 87]:

” Devise an algebraic version of predicate logic in which the class of
representable algebras forms a finitely based equational class”

An equational class is finitely based if it is axiomatizable by a finite amount of equations. An algebra
is called representable if it is isomorphic to a subdirect product of set algebras. According to [A.Tarski
66] we add the requirement that the operations should be logical. An operation is called logical iff it is
invariant under permutation of the base of the algebra. By [I.Sain 93] (p.2.) the logical counterpart of
this requirement is that isomorphic models satisfy the same formulas. Sain found the following solution
to the above stated problem. We shall use the notation of [HMT I] and [HMT II].

[4,5] € w* is the permutation of ¢ and j, [i/j] € w* is the replacement of i by j (i.e. [i/5](i) = j
and [i/j](k) = k if k #1). Let f € w* and 4,5 € w , then let f(i/j) € w* according to the definition
f(i/9)(G) = f(§) and f(i/7)(n) = f(n) if n # i. Sb(X) is the class of all subsets of X.

Definition 1.:([Sain 87.] I. Def.1. p.3.)

By a Sgws we understand a subalgebra:

A C (SHEU),U,M, 0, V; Seuc, Spreds St €1); e,
where: S,(x) =SY(z) ={geV |goT €z} foreveryr €w” andz CV,

S;'. = S|;/;], and suc € w* is the usual successor, and pred € w* is its inverse with pred(0) =0,

V' C “U let Gws,—unit in the sense of [HMT IL] Def.3.1.1. (5.0.) definition and let Ssuc(V) =
Sprea(V) =85(V) =ci(V) =V

Remark 2.: It is clear from the definition that Sgws algebras do not contain the constants of the cylindric
algebras d;;,1,j < w. The logical counterpart of this is that Sgws algebras are related to the first order
logic without equality.
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Theorem 3.:([Sain 87.] I. Thm.1. (Sain & student), p.3.)
ISgws is a variety axiomatizable by a finite scheme of equations.

A detailed introduction to the history of the problem solved above and an overview of the results can be
found in [I.Németi 91]. During the last years many results were published in this area.

The negative results are: in [B.Bir6 87] the non-finitizability of logic with equality, the strengthening of
Bird’s result in (. Németi 91] and [H.Andréka 91]. In [I.Sain, R.J.Thompson 91] there is a non-finitizability
result for quasi-polyadic algebras. In [Sagi 95] and [S4gi,Németi 95| there are a non-finitizability results
for polyadic algebras.

The positive results are: in [.Sain 93] there are results on adding d; j,i,j < w constants to Sgws. In
[I.Sain, V.Gyuris 95| there are finitizability results for first order logic with equality too. Also in [S4gi 95]
it was shown that Sgws can be replaced by Cs-style algebras i.e. by such Sgws’s the geatest elements of
which are (full) Cartesian spaces. Strong positive results in non-well-founded set theories are in [Németi
Tit1],[Németi Tit2] and in [Simon-Németi 95].

Our main theorem originated in [I.Sain 87] II. p.38. Claim (under Remark 10.1.) as an open problem.
The [I.Sain 87] preprint introduced the class of Sgws-like algebras. She gave a finite axiom scheme [I.Sain
87] II. p.37. (Remark 10.1) axiomatizing the class of Sgws algebras. However she left the task of finding
simpler and more elegant axiomatization(s) as an open problem. We list the original system of axioms
and we will give a simplified version of it as stated in [S.Csizmazia 92], [S.Csizmazia 95]. The presently
reported research was conducted with guidance from I.Sain and R.J.Thompson during the period 1987-
1992 (though some corrections were made later). During 1993-1995 strongly related and sometimes
slightly overlapping results were found by I.Sain and V.Gyuris of [I.Sain, V.Gyuris 95].

We will denote the variable symbols of the language of Sgws algebras with z, y.
The function symbols of the type tggys are the following ones:

0: <:d >, the "least element” constant symbol

1: <:d >, the ”greatest element” constant symbol

-: < d:d >, the symbol of the complementation

+: <d,d:d >, the symbol of the join

-: <d,d:d >, the symbol of the meet

c; : <d:d >, the symbols of the cilindrifications (i < w)
S;- : <d:d >, the symbols of the replacements (i, < w)
Ssuc 1 < d:d >, the symbol of the successor

Sprea : < d:d >, the symbol of the predecessor

Let us denote with Lgguys the tggys type first order language.
We will introduce the following defined symbols:

P;'» : < d:d >, the symbols of the interchange (where %, j < w)

¢ def j i
P} = BB SLTSE 8,0,
First we will detail the AX system of axioms according to [I.Sain 87] II. (in the [.Sain 87] II. Proof of
Theorem 1. 34-38.0.), after this we will give its simplified version as PAX.

The AX system of axioms contains the following schemes:

With arbitrary i, 7, k,l < w:

(S0) The usual axioms of the Boolean algebras



(S1) The Spred, Ssuc, S;'- are Boolean endomorphisms
With arbitrary S € {Spred; Ssuc, S;}:
S(x +y) =Sx+ Sy
S(x-y) =Sx-Sy
S0=0
S1=1

(S2) The connections of Spred, Ssuc With each other and with S;:

(1:1) BpredSsuct =%

(1.2) SsucSpredz =Siz

(1.3) 8,.8%a =81 18,0 if {27

(1.4) SiSprea™ = SpreaSih iz if i £ 0 and i # j

(1.5) S9Sprea = SpreaS, 18], 12 if 5 #0

(1.6) Jénsson’s seven schemes about the connections of the Sj-s and the Pi-s (see [HMT IL] (p.68.)):
(1.6.1) Piz=Plz
(1.6:2) PiPiz=u
(1.6.3) PiPiz = PiPlwif§ £ ki Ak 5k
(1.6.4) P‘Skx—SkP’zlf];ék i#k
(1.6.5) P‘S’:c =Sirifi#j
(1.6.6 Sisk:n— SkS‘z ifk #j,i#k,l
(1.6.7) SiSiz =Sz ifi#k

(S3) The ¢; — g9 axiom schemes of Pinter [73]:

(a1) Si(~z) = ~Siz
(92) Sj(z+y) =Siz+Sjy
(g3)

)

)

q4 S’Ska: = S’S’c

(
(g5) ci(z+ y) =C;T + C;y
(g6) T < ciz

(

q7) S’cix = C;T
(g8) ciSix =Sixifi#j

(99) Sickz =, Sizif k#1i,j

We give the simplified version as PAX:



Let PAX be the following finite amount of axiom schemes with arbitrary i, j, k,! < w:
(S0) The usual axioms of the Boolean algebras
(S1) The 8Bpred; Ssucs Sj- are Boolean endomorphisms:
with arbitrary S € {Spred, Ssuc, S} }:
(0.1) S(x +y) =Sx + Sy
(0.2) S(-x)=-Sx
(S2) The connections of Syreq and Sy With each other and with S;'-:
(1.1} BoredBon =
(1.2) SuucSpreaz= Scl’a:
(1.3) SpucSiz =8;tiS,y .z ifi #j
(S3) The connections of ¢;-s and Si-s:
(m) Sjciz =c;z
(p2) ciSizx = Sizifi#j
(p3) Sickr =c,Sizif k#14,j
The properties of the S?-s:
(pa) S;Sf:c = S;S;?x
(ps) Siz ==
The properties of the c;-s:
(Ps) ciz >z

(p7) ci(z+y) =ciz +ciy

PAX fully describes Sgws:

Theorem 4.: ISgws = Mod(PAX)

|
The proof uses significantly [I.Sain 87] I. Lemma 1. (p.6.): ISgws = Mod(AX). As it will be proved
in Lemma 5.: AX and PAX are equivalent, thus Mod(PAX) = Mod(AX). Out of this we conclude
ISgws = Mod(PAX).

Lemma 5.: AX = PAX and PAX | AX

Proof 5.:

1. The part AX |= PAX is obvious, because every axiom and axiom scheme of PAX except of (S1)(0.2)
are part of AX. The axiom (S1)(0.2) is a consequence of AX(S0), (S1):

1=5(1)=S8(z+ —z)=S5(z) + S(~z)

0=25(0)=8(x-—z)=S(z)- S(—x)

and because of the existence of the unique complementer in the Boolean algebras: —S(z) = S(—z).



2. We have to prepare some lemmas as evidence to the other part: PAX = AX
As a proof we will use the results of [C.C.Pinter 73]. Because PAX contains every axiom and scheme of
[C.C.Pinter 73] we will not repeat the proofs of these results. The results are the following ones, where
1,7, k,l < w are arbitrary:
(i) [C.C.Pinter 73] Lemma 2.2 (i) p.363.:

PAX }=c,0 =0
(ii) [C.C.Pinter 73] Lemma 2.2 (ii) p.363.:

PAX [=ci(z - cy) =ciz - ¢y
(iii) [C.C.Pinter 73] Lemma 2.2 (iii) p.363.:

PAX [Ecicjz = cjox
(iv) [C.C.Pinter 73] Lemma 2.2 (iv) p.363.:

PAX |=SiSjz =Sjzifi #k
(v) [C.C.Pinter 73] Lemma 2.2 (v) p.363.:

PAX |=SiSfx = SfSiz if i # k,l and k # j
(vi) [C.C.Pinter 73] Lemma 5 Proof (4) p.363.:

PAX Eciz=min{y |y >z and y = Sj-z for some 2z } if i # j
Lemma 6.: PAX |= SiSkz = Skz, ifcic ==z
Proof 6.:

Let us assume that c;z ==z
If i = j then

Siskzr = Skx

PAX(S3)/(ps)

If i = k then

e
SjSkz = Sjz

PAX(S3)/(ps)
We can assume that i # 7,k
(3) T =% ra S;cix = S;x
PAX(S3)/(p1) Cr==c

ot



Then if j # k
SiSix =8;Sjz = §]Sjz =Sz
PAX(S3)/(p4) (v) ®3)
because 7 # j,k and j # k
Ifj=k
SiSkz " S;Slz s S;:v sl
PAX(S3)/(pa) PAX(S3)/(ps) 3)
]
Lemma 7.: )
Let S € {Spred; Ssuc, S5} be arbitrary. Then the following statements are consequences of PAX:
S(x - y) =8(x) - 8(y)
S(0) =0
S(1)=1
Proof 7.:
~S(a-y) = S(~(z 1) =S(c+-y)  =S(-9)+S(y)  =-S@+-50)
PAX(S1)(0.2) PAX(S0) PAX(S1)(0.1) PAX(S1)(0.2)
= ~(S(z) - 5))
PAX(S0)
Then according to (S0):
S(z-y) = S(z) - S(y) follows.
(4) S1)=S8(z+—=z) ?S(x)+S(—x) ?S(x)-i-—-S(:c) = 1
PAX(S1)(0.1) PAX(S1)(0.2) PAX(S0)
S(0) = S(-1 =-5(1 = -1 =0
0) = S(-1) = —5(1) T -
PAX(S0) PAX(S1)(0.2) 4) PAX(S0)
]
Lemma 8.:

PAX [ c;Slz = ¢;Siz
Proof 8.:

Sz <cz PAX(83)/(ps), (S3)/(p1), (S1)(0.1)
(5) ¢;Siz < cicir PAX(S3)/(p7)



a. (i # j) case:

¢Sz y cic;Slz % cjc;Siz % c]-S;'-SZ:L' = ch;.x
PAX(S3)/p2 (i) (5)-ben  PAX(S3)/(pa), (ps)
i i j with « = Sz

The direction ”<” is verifiable interchanging the role of the ¢ and j.

b. (i = j) case: obvious.

@
Lemma 9.:
PAX EcoSsuct = Ssuct
Proof 9.:
Ssuct % SsucSpredSsuc® = SYSeuct = 089S uct = CoSsuc
PAX(S2)(1.1) PAX(S2)/(1.2) PAX(S3)/(p2) PAX(S2)(1.2),(1.1)
i
Lemma 10.:
PAX [ if z = S}y for some y and i # j, then Siz =z
Proof 10.:
Sz =SSy = Sy =z
(iv)
(because i # j) (because z = S;y)
|

The following lemma have been already published in [I. Sain, V. Gyuris 94] (p.17.) from the author.

Lemma 11.:

PAX [=¢1Ssuct = SsucCoz
Proof 11.:

We remark that the minimums exist in this proof is due to the celebrated Jénsson-Tarski theorem:
every Mod(PAX) algebra is embeddable into a complete algebra ([HMT I.] Thm. 10.5.(i) (p.412.)),
where the positive equations (our system of axioms essentially looks like) are preserved. Because of the
completness the minimums exist in the extended algebra, as well as in it’s subalgebra, in Mod(PAX).

because of (vi): ¢1Ssucx = min{y |y > Ssycr and y = S%z for some z } (1)

B



because of (vi): SsyucC0T = Sguemin{y |y > z and y = 8% for some z } (2
N 1 7

B,

In the next step we will verify that (1) = (2). Starting with (1) we will get (2) applying some
transformations.

a.) The following identity is valid:

min{y |y > Sucz and y = S}z for some z }

B,
i

=min{y |y > Ssucx and y = Sézl for some z; and y = S?zz for some 2z, }

v

A
The identity above is true because of A; C B; and for every y € Bj there is less y’ € Aj, especially
+ def g 5
y = —co(—y) will be available as we shall see later.
Let y € B;.
a.l))
Because of PAX(S3)/(ps): co(—y) > -y = —co(-y) <y=y <y
a.2.)
y' > Sgucx because if y > Sgucx, then
y, = _CO(_y) > —CO(—Ssucl‘) ? _Ssuc(_z) ? Ssuc
il
PAX(S3)/(p7) Lemma 9. PAX(S1)(0.2)
PAX(S1)(0.2)
a.3.)
Sz’ = S3(~co(-y)) T-co(-S) = —co(-y) =y
PAX(S3)/(ps), (S1)(0.2) (3) and Lemma 10.
and
Sy’ = S3(—co(-y)) = —co(~y) =y

-
PAX(S1)(0.2), (S3)/(p1)

Thus because of a.2.) and a.3.) it is true that y' € 4,
b.) It is valid that

)

min {y | y > S,ucz and y = S}z for some z; and y = S92, for some z; } =

Ay
(5)
min {Seucy | y > = and ;/ = Scl’z for some z\} because A; = As.
Ay

b.1.) In the identity above first we shall proof the direction 4; C As:
Let y € A;.

Yy T S(ljy ? Ssucspredy

Lemma 10. PAX(S2)(1.2)
Y2 Seyex = Spredy % Spredssucl' ? T

PAX(S1)(0.1) PAX(S2)(1.1)




y = Sy = SsucSpreay and ¥ 2 Seuc® = Spreay 2 SpreaSenct T2

Lemma 10 PAX(S2)(1.2) PAX(S1)(0.1) PAX(S2)(1.1)
and

S1Spredy = i SO S ey = B et S5 S suie Sprad® 7 SpredS3STY 5 Spredy

PAX(S2)(1.1) PAX(S2)(1.3) PAX(S2)(1.2) y €A
Thus it is true that y € As.
b.2.) After this we shall pro?f the direct’ion Ay, C Ay
Let y € A;. Then y = Ss,/wy for some y > z, and for which (5) is valid too.
Because of PAX(S1) if y >z = ¥y = Ssucy > Ssuct.
Sy = S{S,ucy . SeueSyreiSamey ? Seucty =¥
PAX(S2)(1.2) PAX(S2)(1.1)
and
S5y = S3Ssucy = SeucSiy =Saucy =y
PAX(S2)(1.3) (5) and Lemma 10

verifies that y € A;.
c.) The following identity is valid:

min {Seucy |y >z and y = S?z for some z } = Sgyemin{y|y >z and y = S‘l’z for some z }

Az B,
Because y € By < Sucy € As thus according to PAX(S1)(0.1) the identity above is true and this verifies
the lemma.

[ |
Remark 12.:

Similarly with arbitrary i < w: PAX =€ 41Ssuc® = SsucCiZ.

Lemma 13.:

PAX ESsuc€oz = €0SiSsuct

Proof 13.:
(1) SpredCOS(]}Ssucl‘ ? Sp'r(»:ds(l)coS(ljs:mcfr ? Spredsgcls(l)ssuc ?
PAX(S3)/(p1) Lemma 8 PAX(S2)(1.2)
Sp’redssucsp’redclSsucspredssucx ? Spredclsaucx ? Spredssuccox ? Cox
PAX(S2)(1.1) Loz 10, PAX(S2)(1.1)
from (1):
Spredcoséssucx = CoT applying Ssuc
SsucSpredc()S(l)Ssucx = S,ucCoT because of PAX(S2)/(1.2) and PAX(S3)/(pl)

il
COSOSsucI = SsucCOI



o
We will give the deduction of the system of axioms AX from the system of axioms PAX
AX(S0) exactly PAX(S0).
AX(S1) is provable from PAX(S1) because of the Lemma 7.
AX(S2)(1.1)-(1.3) exactly PAX(S2)(1.1)-(1.3).
AX(S2)(1.4): PAX [=S!Sprear = SpreaSit iz if i 7 0 and i # j proof:
Let i # j and i # 0, then because of PAX(S2)(1.3):
8B} 8 neas =871 18,08 prea PAX(S2)(1.2)
BuucS;8prear = 83118}
SpredSsucS;Spreat = SpreaSiii S}z PAX(S2)(1.1)
St i SpredT = SpredS; J +11 Soa: (v)(because 7 # 0)
5 Sorett = BppedS| SH_l:c PAX(S2)(1.2)

s i SpredT = predSmcSpredSJH:c PAX(S2)(1.1)

S: Spredm = Spreds_»,.;.lz

AX(S2)(1.5): PAX |= S7S,reqr = SpredSy,18j 412 if j # 0 proof:

Let j # 0. Because of PAX(S2)(1.1):

S?x = SpredssucS?a: PAX(S2)(1.3) (because j # 0)

S?:t = Sp,.edS;.HSsucx Lemma 6 (by Lemma 9.: 0 ¢ A(Ssucx))

892 = SpredS), 1558z PAX(S2)(1.2)
S? Spreat = SpredS?HSéS?z PAX(S3)/(p4)
SISpreaT = SpreaS7415550z  PAX(S3)/(ps)
S98pred® = SpreaSy, 1Stz PAX(S3)/(ps)

0 0 1

We will not proof Jénsson schemes in their original sequence from PAX, because some of the schemes
will be used later to prove the other ones.

X(S2)(1.6.6): PAX [=S!Sfz = SfSiz if (k # j,i # k, 1) proof:
Similar as (v).
AX(S2)(1.6.7): PAX =SSz = Siz if (i # k) proof:

Similar as (iv).

10



AX(S2)(1.6.5): PAX [=PiSlz = Siz if (i # j) proof:

Let i # 5. Then:

i QJ +1gi+1 j i+1lqi+lgi+l
P;sg.»c?s,;.,eds;?ﬂsgjls;,+ SsucSlz ?smdsgﬂsﬂ gitigd Seuet =

P; definition

0 Qitlgit+lgi+l 0
SpreaS341 8111 S5 Suet = SpreaS],

(v)

(because i # j)

0 i+lqit+lgi+l 0
SpredS)4+1817 180" 8 1Ssuct n SpredSiy

PAX(S2)(1

(because i # j)

0 j+1 1 j+1 i
Spredsj+1sg) SsucS;'-T ? Spreds';'.}.lssucS;l' =

Lemma 6.
(because 0 ¢ A(chS;-x):Lemma 9.)

SpredSmch-x < S;x

PAX(S2)(1

AX(S2)(1.6.4): PAX =PiSkz = 8tPix
a. Let k #0and k #1,j
PiSiz ~ SpreaSjy

Pj-deﬁnition

0 i+1lqi+lgk+1 0
Sored S0 S BB B = SpredSyy

(v)
(because i # k)

0 Qk+lqitlqi+l 0
Szm:lisg‘4-1so+ SiHSB* Ssuc ? Spredsj+

i+1 i+1

PAX(S2)(1.3.) PAX

(because i # 7) (83)/(pa)
SHISSIS e =

PAX(S3)/(ps)
18118388z e
3) (iv)

1
PAX(S3)/ps

1)

if (§ # k,t # k) proof:

+1Qi+1 k 0 qitlgi+lgk+l
ISL_ISB"' SsucS;T ? Sprede+IS'Z+1S6+ Si_;fl SsucT ?

PAX(S2)(1.3.) PAX

(because 7 # k) (83)/(pa)
(SHISEVISHS ez =

(v)

(because 7,1 # k)

k+1gitlqi+l =
15;11Si1150 Ssucm?

PAX(S3)/(pa) (v)

(because k # j)

k+1g0 j+lqi+l _ Qk 0 j+1lgi+l _ Qkpi
SpreaS§H18341 81185 Suuct = S48 preaS11 SIL1S Souer = 8P

AX(S2)(1.4.

) P’ definition

(because k # j, k # 0)

b. Let k=0and k #14,j

11



Because k # j,14, then 7,7 # 0

PiS)z ? BredSy. SITSINS, . 80 = SpreiBy 1S5 8L 4 Bt =
P’ definition PAX(S2)(1.3.) PAX
(because 7 # 0) (S3)/(p4)
BiredS ey S F A5 818t = SpreaS§ 18711 858EH1S 0z =
(v) (v)
(because 7 # 0) (because 7,7 # 0)
Spredsg+ls(llsg-tll S(i)ﬂssucm ? SpredS?+1Sgl'+1S?+1Sgill Sf,“chm ?
(iv), PAX(S3)/(p4), (v) AX(S2)(1.5)
(because j # 0) (because 0 # j)
89S e S S g — S P!
Pj- definition
AX(S2)(1.6.2): PAX EPiPJz = z proof:
a. Let i # j
PiPiz =
i
P;-deﬁnition

0 Qitlgi+l 0 Qit+lgi+l
SpredS)1 197115518 0ucSpreaSY, 1 S LSS, 0oz =

PAX(S2)(1.2)

0 j+1qi+1gq0q0 i+l gi+l i}

(iv)

SPTEdS?+l SZ: . Sot's?y, S;ill Sit!S e F
PAX(S3)/(p4)
SpreaS341811 SETISISISINIg o T
PAX(S3)/(ps), (iv)
(because i # j)

0 j+lqi+l i+l = 0 j+lgi+1 —
SpredS)118741 81180 smac?s,,mds].JrlsMs0 Seuck =

PAX(S3)/(pa), (ps) (iv)
Spredsg+186+lssuc$ ? Spreds';iissucx ? Spredssuclj ? x
Lemma 6. PAX(S3)/(ps) PAX
(because 0 ¢ A(Ssycz):Lemma 9. ) (S2)(1.1)
12



b. Let i =35
PP =
;

P definition

0 Qitlgit+l 0 Qitlqi+l
SpredSmSiLS?f’ SsucspredsiﬂszLS? Ssuc ?

PAX(S2)(1.2)

0 aitlalilatal  ailail
SpredSi+15:1150" S1S%415f 85" Ssucz T

i+1
(iv)

Sy SLELSHISL SIS e =
Lemma 6.
because i + 1 ¢ A(S::iiSf,“chx)

0 QitlqOQitlqi+l
SmdSmSéilSosiLSB* Ssucz ?

PAX(S3)/(ps)
SpredS?+1 Sz)+lssucz ? Spredsiiissucx ? Spredssucx ? z
Lemma 6. PAX(S3)/(ps) PAX
(because 0 € A(Ssycx):Lemma 9. ) (S2)(1.1)
Lemma 14.:[I.Sain,R.J.Thompson 88] (p.553.)
PAX |=S¥SiSiskSiSic = Skrifi # 4,k
Proof 14.:
Let 7 # j,k. Then:
Sksisisisisis = stsisisisix = sisisisix =
PAX(S3)/(pa), (ps) (iv) PAX(S3)/(pa), (ps)
(because i # j)
SFsisiz = Sksiz = Skz
(iv) PAX(S3)/(pa), (ps)
(because i # k)

13



Lemma 15.:
PAX }=c,-ci:c =c;z if i # j, k
Proof 15.:

Let j # i. Then:

C;CiT -—T: c;Sjcir ? S;-cia: ? C;T

PAX(S3)/(p1) PAX(S3)/(p2) PAX(S3)/(p1)
(because i # j7)

8]
Lemma 16.:
PAX |=Skciz = Piciz if k #
Proof 16.:
a. Let k #0 and k # 4
S?Ci.’l,' "T—‘ stpredssuccil' ? Spredsf.:-llcossuccix ?
PAX(S2)(1.1) Lemma 9. PAX
AX(S2)(1.4)(because k # 0,k # i)(S3)/(ps3)
Spredcosfillsauccix ? Spredsg.;.lcosf.:-llssuccix ? Spredsg+1sf_rllssucciz ?
PAX(S3)/(p1) Lemma 9. Remark I
PAX(S3)/(p3) 11.
Spredsg+1sfillci+lssucx ? Spredsg+1si'c.t11S(i)+lci+lssuc$ ?
PAX(S3)/(p1) Remark 12.

0 k+1gi+l 1
Spredsk+1si$1 SE)+ SgucCi.’L' ? P}ccix

P} definition

b. Let k =0 and k # 1

14



Because k # i, then i # 0

0 0
S'i c;T ? Sl Spredssucc»ix

PAX(S2)(1.1)

1 0 1
Spredsi.{.l Si+1 CoSsucCiT ? Spredsi+1COSsucciz

0 1
? Spredsi+1si+1 Cossuccix ?

Lemma 9. (v)
AX(S2)(1.5)(because 0 # 1) (because i # 0)

1
? Spredsi+lci+1 Ssucciz ?

PAX(S3)/(p1) Lemma 9.,15. PAX
Remark 12. (S3)/(p1)
SpredS%+1SZ')+lci+l SsucCiT ? SpredS}HSf)HSsucCiw ?
Remark 12,15 PAX(S2)(1.1)
SpredssucspredS}.;.lsgl-lSsuccim ? Spreds(l)sil+1sg+lssuccix ? f)CiiE
PAX(S2)(1.2) P definition
o
Lemma 17.:[I.Sain,R.J.Thompson 88] (p.553.) :
PAX |=SkPiz = SkS!S}z if i, ], k are distinct.
Proof 17.:
Let 1, j, k be distinct. Then:
S;‘Pj-(m- —S}.x) % S?P;'.cj(x . =Si1) =
PAX(83)/(ps) PAX(S3)/(p1)
SkPiSic;(z - —Six) 7 SkSic;(x - —Six) - SkSicj(z - —Six) =
AX(1.6.5.) PAX(S3)/(pa) PAX(S3)/(ps)

(because i # j)
Ske;Si(z - ~Ske) = Sle;(Sio - SL(-Sa)

PAX(S1)

Skc;(Siz - —Siz) = S¥c;(0)
PAX(S0)

Thus S¥Piz - —S§P}Sjz = 0 because of PAX(S1).

(because j # i, k)

v S§c;(Ske - —SiSix)

T
PAX(S1) PAX(S3)/(p1), (p2)
(because i # k)
= S5(0) F 0
(4) PAX(S1)



Then:
(1) 8Pjz < S{PS}a = SjPjciSiz

PAX(S0) PAX(S3)/(p2)

= §}SlciS)e = stsisiz

Lemma 16. PAX(S3)/(p2)

(because ¢ # k) (because 7 # j) (because i # k)
(2) Skz = Stsisisksisiz > sFsisiskpir = SkSiSIPiz
T
Lemma 14. (1) (because @ # k,j) and PAX(S3)/(p4), (ps)
(because i # k, 7) PAX(S1)(0.1)

Thus:
SiPlx : SksisipPiPix

(2) — bél

= sksisiz

AX(1.6.2))

Interchanging the role of i and j we will get: (3) S¥Piz > S;“S{ S

The statement follows from (1) and (3).

Lemma 18.:
PAX =S, Piz =PitiS,ucrifi #j
Proof 18.:
Let i # 7
SsucP§x ? Ssucspredsg+1Sgills(i)-"lssucx
P;deﬁnition
I iy = R e
Lemma 17.

(because 7 # 7)

i+1 Q0 i+1
PH_ 1 Si ICQSsuC:L‘ = Pz~+ 1Cossucl‘
9+ + 1 I+

PAX(S3)/(p1)

Lemma 19.:

PAX [=Skc;Sicor = PiP%oz if i # 0,k # i

16

_ Q0g0 j+1lqi+l
= 5980,,8/118{ S ez

PAX(S2)/(1.2)

i+1 Q0
? P;—:lsi_'_lssuc.’l,‘

AX(1.6.4)

i+1
T P;‘j-l SeueT

Lemma 9.

Lemma 9.



Proof 19.:

Let ¢ # 0,k # 3. Then:

Ske;Sicoz = Pic;Sicoz = PiSicor = PiPlcoz
Lemma 16. PAX(S3)/(p2) Lemma 16.
(because k # i) (because 0 # 1) (because i # 0)

AX(S2)(1.6.3): PAX |EPiPiz = PPz if j # k,i # k,i # j proof:

We will prove it in two steps. In the step a. we will prove the statement for ”z” where coz = z. In the
step b. the case coz # x will be attributed to the application of step a.

Let 1, j, k be distinct.
a. Let cozx =1
Starting from PAX(S3)/(p4) we can deduce:
8iSls =8{Sir
PiS'PiSiz=S]PiSkz AX(S3)(1.6.5) (because i # j,j # k,i # k)

PIPiSFSiz=PiSISkxr AX(S3)(1.6.4) (because i # j,j # k,i # k)

J

3) PiP;S{Sfxz PisiSkz (v) (because i # 7,7 # k,i # k)

Starting from (iv) we conclude the following, because i # k:

S;'- iz = 8z
PiSIPiSfz =PiSfzx AX(S3)(1.6.5) (because i # j,i # k)
P; S'PLSkSIz= PiSksiz replacing x by S?(z)
(4) PiS!PiSistz= PisisStz (v) (because i # j,j # k,i # k)

According to (3) and (4) starting from the following identity:

PiPiSiSkz =PiSiP.SiSix
PiPiSiskz  =PiSISIPiSkz AX(S3)(1.6.4) (because i # j,i # k)
PiPisisky = Pis{PiStx (iv) (because j # k)
(5) Pipisists =PiP{SISFz AX(S3)(1.6.4) (because i # j,j # k)
Pch;SZSfci i cor= P;P};S{Sfcisgcox replacing z by ¢;S{cox

PJPiSIPiPlcox = PiP;S!P;Plcox because of Lemma 19.
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(6) P{PiS/Pi Pz = P:P{S/Pi Pz because coz = «

We can transform the identity (6) with help of AX(S2)(1.6.2) for the following form, when the ”z” is

replaced by P{z and Pkz:
(7) PiPiS{z = PiPiSiz

The method eliminating the S¥-s from (5) is called ”Method of the elimination of replacements”

Let us repeat the "Method of the elemination of replacements” in the identity (7) for the S!. We shall

get the following identity.
(8) PiP;.:v = P}Pjx, thus we have proved (1.6.3), if coz = z.

b. Let coz # x

PlPis = 8peiSsucPiPir =Sy PitlPiLS, o =
) 1 J 1 1= o+ 1

PAX(S2)(1.1) Lemma 18. step a. of the deduction
(because j # k,i # j) (coSsuz® =Ssucz:Lemma 9.)
Spred Py 1 PE S ineT s SpredSaucPiPLE = PPl
Lemma 18. PAX(S2)(1.1)
(because i # k,i # j

Thus we have completed the proof of the identity (1.6.3).
AX(S2)(1.6.1): PAX [=Piz = Pz proof:

If i = j then Piz = P}z is obvious. Thus we can assume that i # j.
Let i # j.

a. Let coz ==z

Let k #4,j. Then:

(1) SiSiz = SiSix = Sisiz = SiSliz
PAX(S3)/(p4) (v) PAX(S3)/(p4)
(because j # i,k and k # 1)

Let us start with the identity (1):
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SiSir = SiSiz
Piskpisiz = PiSkPISiz AX(S2)(1.6.5) (because j # i,k and k # 1)
PjPiStSiz = PiPIskSiz  AX(S2)(1.6.4) (because j # k and k # i)
PiP.SkS!z = PIPISkSiz  AX(S2)(1.6.3) (because j # i, k and k # i)
PiSiSiz =PIS{Siz  AX(S2)(1.6.5) (because j # k and k # i)
PiSiSiz =PIsiSiz  PAX(S3)/(ps)
P;S};Si:;: =PISiSlx (v) (because j # i,k and k # 1)

In the last identity we can apply the "Method of the elimination of replacements” to the Sf; and Si. We
will get the following identity:

Pj-a::Pzz (if j #iand cox =z) b. Let coz # z

PZ-'E ? SpredssuchI ? Spredpgillssucx ?
PAX(S2)(1.1) Lemma 16. step a. in the deduction
(because 7 # j) (coSsuzZ = Ssucr:Lemma 9.)
Spredpj":.issucx ? Spredssucpj'l' ? P;IL'
Lemma 16. PAX(S2)(1.1)

(because @ # j)

Thus we have completed the proof of the identity (1.6.1).
AX(S3)/(q1) exactly PAX(S1)(0.2.) if we shall choose as S the S;
AX(S3)/(ge) exactly PAX(S1)(0.1.) if we shall choose as S the S}.
AX(S3)/(q3) exactly PAX(S3)/(ps).

AX(S3)/(qa) exactly PAX(S3)/(pa)-

AX(S3)/(gs) exactly PAX(S3)/(pa).

AX(S3)/(ge) exactly PAX(S3)/(ps).

AX(S3)/(q7) exactly PAX(S3)/(p1)-

AX(S3)/(gs) exactly PAX(S3)/(p2).

AX(S3)/(q0) exactly PAX(S3)/(ps).

Thus we have completed the proof of the Lemma 5. as well as the Theorem 4.
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